Slovenska technickd univerzita v Bratislave
FAKULTA INFORMATIKY A INFORMACNYCH TECHNOLOGII
Studijny program: Informatika

Radoslav Menkyna

Aspektovo-orientované navrhové vzory
Klasifikacia a kombinéacia

Bakalarsky projekt

Vedtci bakaldrského projektu: Ing. Valentino Vrani¢, PhD.
Maj 2007

Slovak University of Technology Bratislava
FACULTY OF INFORMATICS AND INFORMATION TECHNOLOGIES
Study program: Informatics

Radoslav Menkyna

Aspect-Oriented Design Patterns
Classification and Combination

Bachalor‘s Thesis

Supervisor: Ing. Valentino Vrani¢, PhD.
May 2007

PREHLASENIE

Veduci bakalarskeho projektu: Ing. Valentino Vranié¢, PhD.
Maj 2007

Cestne prehlasujem, Zze som tuto bakalarsku pracu vypracoval samostatne.

V Bratislave, 10 méja 2007

Radoslav Menkyna

ANOTACIA

Slovenska technickd univerzita v Bratislave
FAKULTA INFORMATIKY A INFORMACNYCH TECHNOLOGII
Studijny program: Informatika

Autor: Radoslav Menkyna

Bakalarsky projekt: Aspektovo-orientované navrhové vzory: Klasifikacia
a kombindcia

Vedenie bakalarskeho projektu: Ing. Valentino Vrani¢, PhD.

M4j 2007

Tato praca predstavuje klasifikidciu aspektovo-orientovanych navrhovych vzor-
ov podla §truktury aspektu, ktory reprezentuje dany navrhovy vzor. Navrhové
vzory je mozné zatriedit do troch kategorii: navrhové vzory vnuitro-typovych
deklaracii, navrhové vzory bodovych prierezov a navrhové vzory videni. Praca
identifikuje urcita zavislost medzi strukturalnou kategoriou navrhového vzoru
a jeho schopnostou kombinacie. Ak pozname strukturalne typy névrhovych
vzorov, mdzeme povedat, ¢i kombindcia vzoru s uz aplikovanym vzorom,
vyzaduje alebo nevyzaduje zmenu uz aplikovaného vzoru. Kombinacia je stu-
dovanéa podrobne na Styroch aspektovo-orientovanych névrhovych vzoroch,
ktoré zastupuju vsetky strukturalne kategorie, v kontexte problému zavrhnu-
tych tried. Zistené pravidelnost v kombinécii aspektovo-orientovanych névrho-
vych vzorov bola analyzované a zistené poznatky boli prezentované.

ANNOTATION

Slovak University of Technology Bratislava
FACULTY OF INFORMATICS AND INFORMATION TECHNOLOGIES
Study program: Informatics

Author: Radoslav Menkyna

Bachelor’s Thesis: Aspect-oriented design patterns: Classification and Com-
bination

Supervisor: Ing. Valentino Vranié¢, PhD.

May 2007

This report proposes a classification of aspect-oriented design patterns ac-
cording to the structure of an aspect that represents a particular design pat-
tern and explores its role in pattern combination. Patterns can be classified
into three categories: pointcut design patterns, advice design patterns, and
inter-type declaration design patterns. Certain dependence between the de-
sign pattern structural class and its combination ability has been identified.
Knowing a structural category of the patterns, it is possible to say whether a
sequential combination of the pattern with a already applied pattern can be
made with or without having to change the already applied design pattern.
The combination is studied in detail on four aspect-oriented design patterns,
which cover all the structural categories, in the context of class deprecation
problem. Identified regularity in the combination of aspect oriented design
patterns was discussed and summarized.

ACKNOWLEDGMENTS

I would like to thank Valentino Vrani¢ for numerous discussions that have
been very valuable and for his comments which helped me a lot to put the
thesis into its final form.

Contents

[1.3 Aspect-Oriented Paradigm|.
[1.4 Report Organization|

|2 Selected Aspect-Oriented Design Patterns|

D7 POICY] « o o o o e

|3 Classification of Aspect-Oriented Design Patterns|
3.1 Gang of Four Classification|
[3.2 Classification According to Aspect Structure]

|4 Combination of Aspect-Oriented Design Patterns|
4.1 Class Deprecation Problem|
4.2 Warn of Deprecated Class Use]
4.3 Deprecated Class Swapping|
4.4 Logging of Swapping|

[Regularity in Aspect-Oriented Design Pattern Combination| 27

|IA° Towards Combining Aspect-Oriented Design Patterns|

31

33

4 Contents

IB A Bordered Cuckoo’s Egg Policy: Combining Aspect-Oriented |
| Design Patterns|

[C_Attached CD Contents|

Chapter 1

Introduction

In the field of software engineering progress is very fastE] New methods and
techniques appear every day with common goal: to make software better.
Better as quicker, more efficient, smaller, easier to write, reusable, etc. Using
object-oriented design patterns has proved all this can be accomplished.
Now aspect-oriented paradigm is here and new design pattern are emerging
in it already. This work will try to take closer look at these patterns, classify
them and study their combination. This chapter will provide a definition
of the main terms and an introduction to aspect-oriented paradigm. It also
summarizes the organization of following chapters.

1.1 Design Patterns

Patterns first emerged as a concept in architecture. An architect Christopher
Alexander once noticed that two or more different projects share the same
problems. The core of these problems is always the same. The solution to
these problems will be similar. The idea is to find universal solution that can
be then altered according our needs in other worlds to find a pattern.|Ale79a]
This is the definition of a pattern by Christopher Alexander:

“Each pattern describes a problem which occurs over and over
again in our environment, and then describes the core of the
solution to that problem, in such a way that you can use this
solution a million times over, without ever doing it the same way
twice” [Ale79b].

Patterns were adopted by software engineering and found great use in
object-oriented paradigm [Cop04]. Design pattern is a solution to some

IThis report builds on the adapted text of my two papers that have preceded it. I am
the only author of the paper in Appendix [A| [Men(T7], and my contribution to the paper
in Appendix [B| [MV] is approximately 70 %.

6 Chapter 1. Introduction

kind of problem repeated through a code or through different projects. It
tries to be a general solution to the set of similar design problems. Design
patterns have to be customized to be used in a particular application. This
is summarized in a definition by GOFE]

“Design patterns are descriptions of communicating objects and
classes that are customized to solve a general design problem in
a particular context [GHJV95].”

Design patterns should not depend on details of a particular program-
ming language, so different languages of the same paradigm can be used to
implement them. By modularization the design pattern helps to increase
reusability of code and makes it simpler to understand.

A design pattern follows a certain template which was created by Christo-
pher Alexander. Template was then adapted to be used by software design
patterns by GoF. This template describes the problem design pattern refers
to, its solution, and possible consequences of using the pattern.

1.2 Idioms

Sometimes structures smaller than design patterns called idioms can be rec-
ognized. These structures also provide a solution to some kind of problem,
but at a lower level. They are often language dependant and their nature
usually comes from the syntax of a particular language. However, they are
crucial to design patterns, because the combination of these idioms coupled
with their generalization can lead to a design pattern.

This can be best seen on one pattern of GoF design patterns called
the Visitor. A key to this pattern is the double dispatch technique. This
technique is directly supported by, for example, CLOS. Thus, to CLOS,
double dispatching was not a design pattern but an idiom. An idiom can
then be generalized to become design pattern which can be used also in
other languages [GHJIV95].

Some fragments of code which are treated like idioms by part of the
community are seen as antiidioms by others. An antiidiom is an idiom
which should solve particular problem, but it does not solve the problem in
full scope. For example, according to Arno Schmidmeier [Sch04] a common
idiom Not Within is an antiidiom. This idiom should solve the problem
with the infinite recursion, but it solves only a subset of this problem and
examples where the infinite recursion occurs can be found.

2@Gang of Four or GoF which stands for Erich Gamma, Richard Helm, Ralph Johnson
and John Vlissides

1.3. Aspect-Oriented Paradigm 7

1.3 Aspect-Oriented Paradigm

Aspect-oriented paradigm builds a lot on object-oriented paradigm which
is a current mainstream. This brings many advantages. For example, our
knowledge of object-oriented paradigm can be used in it or the same devel-
opment environments can be used. Aspect-oriented paradigm tries to find
elegant solutions to problems which solution was too complicated in older
paradigms.

The main focus is on crosscutting concerns. These concerns cut across
through base concerns. They are creating undesirable dependencies among
the classes and cause code tangling and scattering. This can complicate
future development of software. Typical crosscutting concerns are, for ex-
ample, logging or authentication. The main idea of aspect-oriented pro-
gramming is to define these crosscutting concerns in a modular way at one
place [KLM™97].

There are many implementations of the aspect-oriented paradigm. To-
day the most popular language is AspectJ. This language was developed
by Gregor Kiczales and his team at Palo Alto Research Center (PARC).
There is also implementation of this paradigm by IBM called HyperJ. This
language is slightly more powerful, but didn’t find so wide use. There are
also many aspect-oriented extensions of other languages like C#, C or C++,
Python, PHP and other. AspectJ syntax is generally known and is used as
default in aspect-oriented community.

The basic terms defined in the PARC approach to aspect-oriented pro-
graming are:

Join points are points in execution of code where crosscutting may occur.
Different languages support different join points. In general, join points can
be all method calls or executions, constructor calls or execution, object
initialization, field operations, etc.

A pointcut declares join points where crosscutting should occur. It sim-
ply describes a set of join points. Various operators can be used to make
selections of join points. When the code execution reaches a join point
declared in a pointcut advice bound with this pointcut is executed.

An advice is a piece of code to be executed at desired join points declared
in the pointcut. Advice can be executed before, after, or around certain
pointcut.

A inter-type declaration is a static crosscutting technique that allows to
add fields, methods and interfaces into existing classes.

An aspect is a base construct of Aspect]. It is very similar to a class
from in object-oriented paradigm. An Aspect encapsulates the whole logic
of a crosscutting concern. From the point of structure it consists of three
main components: inter-type declarations, pointcuts and advices. It can
also define fields, methods or nested classes like ordinary Java class.

Crosscutting concerns defined by these constructs are then weaved into

8 Chapter 1. Introduction

the code of base concerns during compilation. AspectJ compiler produces
standard Java byte code.

1.4 Report Organization

The rest of the article is organized as follows. Chapter 2 presents an overview
of common aspect oriented design patterns. In Chapter 3 the classifica-
tion according to structure of the design pattern is presented. Chapter 4
presents the case study of class deprecation problem which is solved by
aspect-oriented design pattern combination. Chapter 5 summarizes the reg-
ularity between design pattern structure its combination ability. Chapter 6
is the conclusion of my work.

Chapter 2

Selected Aspect-Oriented
Design Patterns

There are two major groups of design patterns implemented in AspectJ. First
there are whole new aspect-oriented design patterns but there is also quite
group of object-oriented design patterns reimplemented in this language.
Several studies show benefits of this reimplementation [HK02, [HB03|]. In
most cases, a better modularity of GoF patterns was achieved. Modularity
simplifies the use of these patterns and increases their reusability. The best
results were achieved with patterns that have crosscutting structure (e.g.,
Observer).

It is questionable whether these reimplementations are true aspect-orient-
ed design patterns, because they are solutions to problems which came from
the object-oriented paradigm. In this work, my main focus will be at a in-
trinsic aspect-oriented design patterns. These patterns try to solve inherent
aspect-oriented problems.

In general, programmers have less real project experience with aspect-
oriented paradigm, because fewer projects are implemented in aspect-oriented
languages. Experience has the key role in discovering idioms and design pat-
terns. Hanenberg [HC02|] presents strategies of aspect-oriented programming
and points out that these strategies could become design patterns. While
strategies are very similar to design patterns, they can’t be regarded as de-
sign patterns because some of them rely too much on AspectJ. Despite this,
patterns are emerging in the aspect-oriented paradigm already. This means
that some of strategies and idioms were generalized, do not relay on one
particular language any more and became patterns. Following sections will
present an overview of common aspect-oriented design patterns identified so
far.

10 Chapter 2. Selected Aspect-Oriented Design Patterns

2.1 Wormbhole

The Wormhole pattern [Lad03| connects the callee with caller in such a way,
that they share their context information. It creates a direct connection be-
tween two levels in the call stack. This is very helpful when additional
context information has to be added [Lad03|. Instead of adding extra pa-
rameters in each method in the control flow or using a global storage, this
pattern can be used.

The pattern can be implemented with an aspect in which three pointcuts
are defined: one for the caller, another for the callee, and the third one as
the so-called wormhole pointcut. Pointcuts for the callee and the caller
must collect the context which is transferred through the wormhole. The
Wormbhole defines the places of execution of the callee’s join points in the
control flow of the a caller’s join points [Lad03].

This is a template for the Wormhole pattern adopted from [Lad03]:

public aspect WormholeAspect {
pointcut callerSpace(<caller context>)
: <caller pointcut>;

pointcut calleeSpace(<callee context>)
: <callee pointcut>;

pointcut wormhole(<caller context>, <callee context>)
: cflow(callerSpace(<caller context>))
&& calleeSpace(<callee context>);

// advices to wormhole

around(<caller context>, <callee context>)
: wormhole(<caller context>, <callee context>) {
.. advice body

2.2 Exception Introduction

In some cases when the aspect is used to implement some crosscutting con-
cern checked exceptions have to be caught in its advice. This usually hap-
pens when methods of Java libraries, which declare to throw such excep-
tions, are used in its advice. In AspectJ E advice cannot declare to throw a
checked exception unless the advised joint point declared this exception.The
Base concern logic cannot declare those exceptions because it simply does
not know anything about the logic used in the crosscutting concern [Lad03].

The Exception Introduction pattern [Lad03] suggest that the checked ex-
ceptions should be caught and simply wrapped into a new concern-specific

!This problem is common to many languages of aspect-oriented paradigm.

2.2. Exception Introduction 11

runtime exceptions. Such exceptions can be then thrown to higher level,
where they can be unwrapped and the real cause of exception revealed
[Lad03]. This is a template for this pattern adopted from [Lad03]:

public abstract aspect ConcernAspect {
abstract pointcut operations();

before() : operations() {

try {

concernLogic();
} catch (ConcernCheckedException ex) {

throw new ConcernRuntimeException(ex);
}

}

void concernLogic() throws ConcernCheckedException {
throw new ConcernCheckedException(); // simulating failure

}

This simple form of Exception Introduction pattern uses a runtime excep-
tion. But the base concern is not prepared to catch such exception. This
problem solves the extended version of this pattern, which tries to preserve
the exception specified by the base concern (a specific exception). This is
achieved by adding another aspect.The advice of this aspect will be invoked
after the ConcernRuntimeException is thrown by any method that declares
that it may throw a specific exception. In the advice, a check whether the
cause for runtime exception is the same as cause for specific exception has
to be performed [Lad03].

Here is the template for the extended version adopted from [Lad03]:

public aspect PreserveSpecificException {
declare precedence: PreserveSpecificException, SpecificConcernAspect;

after() throwing(ConcernRuntimeException ex) throws SpecificException
: call(* *.x(..) throws SpecificException) {

Throwable cause = ex.getCause();

if (cause instanceof SpecificException) {
throw (SpecificException)cause;
}

throw ex;

12 Chapter 2. Selected Aspect-Oriented Design Patterns

2.3 Participant

Usually aspects try to introduce some behavior to the base concern in such
a way that the base concern is not aware of the aspect. In this case the roles
change. Aspect makes classes to participate.

This is needed for the purpose an aspect is trying to achieve. In some
cases, defining pointcuts only by the means of language syntax is not suf-
ficient. For example, if the advice should affect only methods with certain
characteristics, one cannot decide only according to their names whether
to include them in the pointcut or not. Only the creator of these meth-
ods knows their characteristics. This is where comes from the idea that
classes themselves should express if they want to be advised. If they want
to participate they simply define an appropriate pointcut in them [Lad03].

Here is the base schema of this pattern. First an abstract aspect is
defined. In this aspect, an abstract pointcut is declared that represents the
characteristics of methods to be advised. This pointcut is then defined in the
each base concern class which wants to be advised. The desired crosscutting
concern is defined in the advice. This aspect is called the invitation aspect.

Each class which wants to participate defines a concrete aspect extend-
ing the abstract invitation aspect. This means class provides a definition
of the abstract pointcut for join points of its methods which have desired
characteristics [Lad03].

A template for an abstract invitation aspect adopted from [Lad03]:

abstract aspect AbstractDesiredCharacteristicAspect {
public abstract pointcut desiredCharacteristicJoinPoints();

// Ezample uses around(), but before() and after() work as well
Object around() : desiredCharacteristicJoinPoints() {
// advice code

}

Template for the participating class:

public class MyClassl {
// MyClass1’s implementation

public static aspect DesiredCharacteristicParticipant
extends AbstractDesiredCharacteristicAspect {
public pointcut desiredCharacteristicJoinPoints() :
call(x MyClassl.desiredCharacteristicMethod1())
|| call(x* MyClassl.desiredCharacteristicMethod2())

2.4. Cuckoo’s Egg 13

2.4 Cuckoo’s Egg

The Cuckoo’s Egg Design pattern [Mil04] is quite simple but powerful. It
expresses how powerful aspect-oriented programming can be. It is used to
control or change the objects created by the constructor call. This means
that with this pattern it is possible to change the type of the object being
instantiated [Mil04].

The pattern uses an aspect in which pointcut specifies join points, usually
those are constructor calls of objects, and an advice which changes the object
being created or performs some control logic over it. [Mil04].

This pattern could be also used to implement the Singleton pattern. In
this case, the advice would only check whether an object of original class
has already been created or not.

Here is simple template adopted from [Mil04]:

public aspect ControlClassSelectionAspect{ // Cuckoo’s Egg Aspect
public pointcut originalClassConstructorCall() : <call pointcut>

Object around() : originalClassConstructorCall(){
return new DesiredClass();

}
}

Note that the swapping object must be a subtype of the original object
class; otherwise, we will get a class cast exception on the first attempt to
instantiate (now swapped) the original class.

2.5 Director

The Director pattern [Mil04] can be used to define some roles or behavior
to an unknown number of classes. A role can be defined without knowing
the particular class it will be applied to. A pattern can be used to define
some logic in an abstract aspect without knowing the classes this logic will
be applied to. The Director can also implement some relationships within
abstract entities [Mil04].

Two aspects are used to implement director design pattern. The first
aspect is abstract and it should specify the roles. This can be done using
Java interfaces. The second aspect introduces the roles to specific classes. It
can also provide any required implementations of methods which are needed
but not implemented in target classes [Mil04].

2.6 Border Control

The Border Control design pattern [Mil04] is used to define some reasonable
regions in the application. These regions are later reused by other aspects

14 Chapter 2. Selected Aspect-Oriented Design Patterns

to ensure they are used only in correct scope. Use of this pattern is also
convenient when the changes in structure of the application are expected.
After such changes only declarations of regions in border control aspect are
changed and other aspects which are reusing this declarations will be also
affected [Mil04].

The pattern can be implemented as single aspect that defines the regions.
Regions are represented as pointcuts. These pointcuts can be reused later
in other aspects in the system.

Folowing code is a template of Border Control design pattern adapted
from [Mil04]:

public aspect MyRegionSeparator {
public pointcut myTypesl(): within(mypackagel.+);
public pointcut myTypes2(): within(mypackage2.+);
public pointcut myTypes(): myTypesl() || myTypes2();
public pointcut myMainMethod()
: withincode(public void mypackage2.MyClass.main(..));

2.7 Policy

The main idea of this pattern is to define some policy or rules within the
application. The rules can wary from suggestions and warnings to overriding
methods, classes or libraries. This is very useful in some project where many
developers are involved [Mil04].

The policy design pattern [Mil04] can be implemented as a single aspect.
In this case aspect defines a project-wide rules or policies.A Second approach
is used if not only top level policies are required, but also local rules or
exceptions must be considered. Then the top level policies are defined in
an abstract aspect in which an abstract pointcut is declared. The Abstract
aspect is then overridden by a concrete aspect which applies the local policies
[Mil04].

Here is template adapted from [Mil04]:

public abstract aspect ProjectPolicyAspect {

protected abstract pointcut allowedSystemOuts();
declare warning: call(x *.println(..)) && lallowedSystemOuts():
"System.out usage detected. Suggest using logging?”;

}

public aspect MyAppPolicyAspect extends ProjectPolicy Aspect {
// Specifies regions where messages to System.out are allowed.
protected pointcut allowedSystemOuts():
BorderController Aspect.withinMyAppMainMethod() ||
BorderControllerAspect.withinThirdParty() ||
BorderController Aspect.withinTestingRegion();

2.8. Worker Object Creation 15

2.8 Worker Object Creation

The Worker Object Creation pattern [Lad03] and Proceed Object pattern
[Sch04]. are very similar. Despite different terminology, it is clear they
share the same idea. In the following description, the worker object creation
pattern terminology will be used.

This pattern has a wide use. It may be used when the use of the pro-
ceed call in an object-oriented context is needed or when the proceed call
should be executed in a different thread. This can be used with Java Swing
Framework, where all calls which update the GUI must be performed in-
side the switching event dispatch thread (e.g., implementing thread safety
in the Swing applications) [Sch04]. Another example of the situation when
the proceed call should be executed in a different thread is improving re-
sponsiveness of GUI applications which perform complex computations (e.g.,
authorization and transaction management) [Lad03].

This pattern can be also used to advise the proceed call. This is desired
when the aspect uses an around advice and the algorithm in the advice itself
should be e.g., traced or logged [Sch04].

The Worker Object Creation pattern uses aspect to automatically create
an object of anonymous class implementing the runable interface. Pointcut
of this aspect captures all the join points which are needed. Advice simply
executes the join point by calling proceed() inside the run() method in the
body of the anonymous worker class. Calling the run() method at a later
time or even in another thread will execute the captured join point [Lad03].

Here is a template advice of Worker Object Creation pattern adopted
from [Lad03]:

void around() : <pointcut> {
Runnable worker = new Runnable () {
public void run() {
proceed();
}

Chapter 3

Classification of
Aspect-Oriented Design
Patterns

To study how are aspect-oriented design patterns related to each other it is
needed to classify them. GoF classification of object-oriented design patterns
is a natural first choice for this (Section [3.1)), but it will shown that the
classification based on the internal structure of an aspect fits this task much

better (Section [3.2)).

3.1 Gang of Four Classification

According to Gamma et al. object-oriented design patterns are divided into
three major categories which are reflecting the purpose of design patterns.
Here are the definitions of these categories [GHJV95)]

Creational patterns are concerned in the object creation. They are
controlling this creation and try to solve problems that are associated with
this process.

Structural patterns deal with the problem of composition of objects or
classes. They try to find relationships between entities and produce simple
design which gives an answer to the composition problem.

Behavioral patterns characterize the way how objects interact or com-
municate.

The question is whether this classification can be applied also to intrin-
sic aspect-oriented design patterns. The Answer to this question is not so
straightforward.

Some patterns were strong candidates for a certain category. For exam-
ple, the Cuckoo’s Egg pattern (Section can be considered as a strong
candidate for creational pattern group because it affects the process of creat-
ing the objects. The Director pattern (Section is a reasonably denoted

18 Chapter 3. Classification of Aspect-Oriented Design Patterns

as a structural pattern because it affects the structure of the base classes
by adding the new roles to them. The Wormhole pattern (Section can
be considered to be behavioral pattern because it creates new way in which
two objects can communicate.

Other patterns were harder to classify by this criteria. One of such
patterns was Worker Object Creation pattern (Section [2.8). Despite the
fact that this pattern creates a worker object and it could be classified as
creational, the creation of worker object is only a means of achieving main
objective of the pattern: proceeding a call and its use in another context
such as a new thread.

At last some patterns are impossible to classify by this criteria. These
include Participant pattern (Section or Border Control pattern (Sec-
tion . These patterns are not creational because their point of interest
is not creation of some objects. They can’t be considered structural either
because they are not concerned in the composition of objects into new en-
tities, nor they are behavioral because they are not concerned how objects
communicate and interact.

To conclude, it is possible to apply GoF classification to aspect-oriented
design patterns, but in some cases it is questionable which category certain
design pattern belongs to.

3.2 Classification According to Aspect Structure

Hanenberg et al. also presented a set of AspectJ idioms and a scheme for
their interrelated application [HSUO3]. Similarly to the well-scheme of GoF
patterns [GHJV95], it is represented by a graph in which patterns that can
be combined are connected by directed edges. Each edge is annotated with
the role of the pattern in which it originates plays in the pattern in which
the edge terminates. However, no attempt is made to categorize the idioms.

The GoF design pattern classification used as the main criterion the
purpose of a design pattern. However, interesting criteria could be the
structure of an aspect-oriented design pattern.

Each design pattern is usually represented by one or more aspects. As
has been mentioned in the (Section , an aspect contains three main
components: inter-type declarations, pointcuts, and advices. By studying
available aspect-oriented design patterns, one may notice that in the aspects
of each pattern one of the three main parts of an aspect, i.e. a pointcut,
advice, or inter-type declarations, prevails in achieving the purpose of the
pattern. In other words, one component is crucial to understand or achieve
the logic of the design pattern.

If main purpose is laid on the pointcut, advice is not presented or is very
simple. For example, the advice only presents how pointcuts would be used

3.2. Classification According to Aspect Structure 19

in it, but the advice logic is not presentedﬂ In the category where advices
have the main role, pointcuts are usually defined as abstract or they are
only represented as <pointcut>.

According to the structure of the aspects that are representing aspect-
oriented design patterns, these can be divided into three categories: pointcut
design patterns, advice design patterns and inter-type declaration design
patterns.

e Pointcut design patterns: Wormhole pattern, Participant pattern,
Border Control pattern

e Advice design patterns: Worker Object Creation pattern, Excep-
tion Introduction design pattern, Cuckoo’s Egg design pattern, Direc-
tor design pattern.

e Inter-type declaration design patterns: Policy design pattern.

In most cases patterns were straightforward to classify by this criteria.
One can notice the Participant pattern (Section where the pointcuts
crucial to logic of the design pattern are not defined the in the aspect but in
plain Java classes. The Director pattern (Section , which is considered
as advice pattern, has a logic that can be sometimes expressed in a more
complex way than just by an advice (e.g., using interfaces or additional
method definitions). At last, it is possible to mention wormhole pattern
(Section where the advice is present only to show how to use pointcuts
in it.

! This can be seen in the wormhole pattern (Section [2.1)).

Chapter 4

Combination of
Aspect-Oriented Design
Patterns

Aspect-oriented design patterns are defined in a modular way. They can be
usually implemented by one or more aspects, but in most cases their logic
is concentrated in one place. This makes the possible combination easier. A
combination of two patterns means a subsequent interrelated application of
two patterns to a problem at hand. Along with application of design patterns
to already applied patterns observations how these patterns were affected
has been made. In general, a design pattern can be combined with many
other design patterns. The question is whether this combination would be
useful and meaningful.

This chapter will provide a sample problem and its solution using com-
bination of aspect-oriented design patterns.

4.1 Class Deprecation Problem

Due to its complexity, software is usually developed in teams. Team devel-
opment requires developers to obey some common rules and policies. Thus,
new versions of classes in frameworks used by application programmers oc-
cur quite often. The old version of a class cannot be simply replaced with a
new one at once. A new class has to be tested (and corrected if necessary)
for some time during which it is common to have and use both versions of
the class.

All developers should be kept informed of new class versions and warned
(Section or sometimes even forced—to use them (Section [4.3)). Just
instructing developers to do so simply does not work. Developers often
forget to obey policies or they simply overlook the information about a new
class version. A better way is to incorporate this information into the build

22 Chapter 4. Combination of Aspect-Oriented Design Patterns

process (Section 4.2)). Compiler messages—warnings and errors—that warn
of broken policies and rules will hardly be overlooked by the developers.

In some cases, when the policy must be strictly fulfilled, more radical
steps may have to be taken (Section . By introducing a new version
of a class into the framework, its former version becomes deprecated. It
would be useful not just to inform programmers they are not allowed to use
the old version any more, but also to automatically change any old class
instantiation for the new one.

The following sections will present a solution of this problem that can
be achieved by combining four specific aspect-oriented design patterns. As
an example, a program was created that finds a shortest path between two
points in a specific graph. The graph with the path is then displayed, but
there are two classes suitable for this task present in the system. Class Dis-
play, which is deprecated, should not be used no more. Class Display2 should
be used instead. This solution has been also implemented a is provided in

appendix [C]

4.2 Warn of Deprecated Class Use

We first assume it is sufficient to warn the developer using a deprecated
class named, for example, Display, and suggest him to use Display2 instead.
For this purpose, it is convenient to use the Policy pattern (Section .
The following code snippet shows how the Policy pattern can be applied to
achieve this goal. Aspect will detect every call to the Display constructor
and show the provided warning during compilation upon these calls.

public aspect Warning {
declare warning : call(Display.new())
: "Class Display is deprecated. Use Dysplay2 instead.";

Subsequently, we realize that we have to allow the use of Display within
the the testing package and third party code. In this situation, the Border
Control pattern (Section [2.6)) can be applied. This pattern defines regions
in an application that can be used by other design patterns or aspects.
Following code presents an application of the Border Control pattern to our
problem. The aspect defines four public pointcuts which represent regions
in our application.

public aspect Regions {
public pointcut WithinMyApplication():within(pathfinder.x);
public pointcut WithinDisplay():within(pathfinder.Display);
public pointcut WithinMain()
:withincode(public static void pathfinder.Main.main(..));

4.3. Deprecated Class Swapping 23

public pointcut WithinTesting():within(pathfinder. Testing);
public pointcut WithinClassSwitcher():within(pathfinder.ClassSwitcher);

Afterwards, PolicyAspect will have to be adapted as shown in the follow-
ing snippet. This represents the combination of the Policy pattern with the
Border Control pattern.

public aspect Warning {
declare warning :
call(Display.new()) && !Regions.WithinTesting()
: "Class Display is deprecated. Use Dysplay2 instead.";

}

As you may recall, Border Control is a pointcut pattern (Section .
On the other hand, Policy is an inter-type declaration pattern (Section |3.2)).
As can be seen in the example, combining a pointcut pattern with an al-
ready applied inter-type declaration pattern requires changes in the already
applied pattern.

If one could predict that there will be exceptions from policy of the
use of Display, it would be possible to apply the Border Control pattern
first and the Policy pattern could be then added without having to change
the existing code. This suggests that combining an inter-type declaration
pattern with an already applied pointcut pattern can be performed without
having to change the already applied pattern.

4.3 Deprecated Class Swapping

Assume now one would like to make a change from Display to Display2 auto-
matic while still informing developers of attempts to use Display. For this,
we may use the Cuckoo’s Egg pattern (Section [3.2)). This pattern captures
calls to a constructor of a particular class and employs an around advice to
replace it with a call to a constructor of another class.

The Following code shows how this pattern may be applied to replace
Display constructions with Display2 construction:

public aspect ClassSwitcher {
public pointcut oldClassConstructor() :
call(Display.new()) &&
Regions.WithinMyApplication()&&
'Regions. WithinTesting();

Object around() : oldClassConstructor(){
return new pathfinder.Display2();
}

24 Chapter 4. Combination of Aspect-Oriented Design Patterns

Recall from Section that Display2 must be a subtype of Display; oth-
erwise, we will get a class cast exception on the first attempt to instan-
tiate Display. Moreover, we need Display2 to be a subtype of Display to
make it compatible with the existing references to Display. This can be
achieved either by stating inheritance directly in Display2 or by using a de-
clare parents inter-type declaration (presumably, though not necessarily, in
the Cuckoo’s Egg aspect itself).

The Cuckoo’s Egg pattern uses the pointcuts defined in the Border Con-
trol pattern, too. Cuckoo’s Egg is an advice pattern and it was combined
with Border Control without having to change it. This suggests that com-
bining an advice pattern with an existing pointcut pattern can be made
without changes in the already applied pattern.

4.4 Logging of Swapping

Assume there is a need to log the swapping of the deprecated class with
the new one. This would seem a simple task. A logging code could be
simply added to the CuckooEgg’s advice. When there is a need to switch
from deprecated class to new version this advice would be executed. But
there is a problem. When the logging piece of code is added to the advice,
assuming the logging is performed into a text file, it is needed to deal with
an IOException that could occur during the execution of this code.

As mentioned in the Section an aspect cannot declare throwing of
an exception that was not declared by the advised join point. Amnother
possibility is to throw a runtime exception. In this case the Exception
Introduction pattern can be used. This pattern suggests to use a concern-
specific runtime exception, which extends a runtime exception. By this, it
becomes easier to distinguish between exceptions thrown by various aspects.
Also, if a runtime exception has been used there would be no difference
between exceptions thrown by various concerns [Lad03].

The following code snippet presents an example implementation of a
concern-specific exception and a use of the Exception Introduction pattern
adapted to our problem:

public class SwitchLoggingException extends RuntimeException {
public SwitchLoggingException(Throwable cause) {
super(cause);
}

}

public aspect SwitchLogging {
before(): adviceexecution() && Regions.WithinClassSwitcher() {

try {
logSwapEwent()

catch(IOException e){

4.4. Logging of Swapping 25

throw new SwitchLoggingException(e);

Exception Introduction is considered to be an Advice pattern and it was
added to the Cockoo’s Egg pattern without having to make any change in
it. As can be seen from the code snippet, it can also reuse definitions from
the already applied Border Control pattern.

Chapter 5

Regularity in
Aspect-Oriented Design
Pattern Combination

As we will see in this chapter, the combination of aspect-oriented design
patterns is substantially affected by their structural category (defined in
Section . As mentioned before, by combination of two patterns is con-
sidered as a subsequent interrelated application of two patterns to a problem.
Thus, one of the patterns is applied to the problem, and afterwards another
one is applied in connection to the artifacts of the former pattern.

Thanks to the crosscutting nature of aspects, most aspect-oriented de-
sign patterns can be combined with other patterns without the need to
modify the already applied patterns. An example of a pattern that can be
combined with almost any other pattern is Exception Introduction, which
represents an advice pattern. Combination of this pattern with another ad-
vice pattern was presented in Section where Exception Introduction was
added to Cuckoo’s Egg.

Another pattern that can be used with other, already applied patterns
without having to make any changes to them is Policy, which is an inter-type
declaration pattern. This pattern defines a pointcut that captures the join
points in a base concern or another pattern whose occurrence represents
breaking of some policy. If such a joint point occurs, a compile error or
warning is issued.

It is also possible to combine a pointcut pattern with another pattern of
the same type without having to change that pattern. In such a combina-
tion, the new pattern will actually use the pointcuts of the already applied
pointcut pattern. A simple example of this would be combining a Worm-
hole pattern with an already applied Border Control pattern. This way,
the Wormhole pattern would be able to use regions defined by the Border
Control pattern in its own pointcuts.

28 Chapter 5. Regularity in Aspect-Oriented Design Pattern Combination

However, combining a pointcut pattern with an already applied advice
or inter-type declaration pattern usually requires a change of this pattern.
An example of combining a pointcut pattern with an already applied inter-
type declaration pattern has been presented in Section where we had
the Policy pattern applied and combined the Border Control pattern with
it. Recall also from the same section that if we go the other way around,
i.e. if we combine an inter-type declaration pattern (e.g., Policy) or advice
pattern (e.g., Cuckoo’s Egg) with an already applied pointcut pattern (e.g.,
Border Control), this can be done without having to change them.

Assume the pointcuts of a particular non-pointcut pattern in a develop-
ing application can no longer be defined in a simple way because it is not
certain whether the pattern should be applied to new classes. Such a pattern
can be combined with a Participant pattern, which is a pointcut pattern,
which would enable individual classes to declare participation in this pattern
application. However, the implementation of a Participant pattern requires
the already applied pattern code to be altered.

Figure[5.1|presents schematically the combinations of the aspect-oriented
design patterns we discussed. Pattern category is indicated graphically: oval
nodes represent advice patterns, rectangular nodes are pointcut patterns,
and rhomboid nodes stand for inter-type declaration patterns. Where any
pattern of the given category is applicable, its name is shown as asterisk.
The edge direction corresponds to the direction of pattern application: an
edge originates in the pattern being applied and ends in the pattern to which
this pattern is applied to achieve pattern combination. Dashed edges mean
no change of the pattern at the edge end is required, while solid lines mean
the change is necessary.

Border Control K=~ —~——~——

, \
7 \
L w_ - -7 V\ —
s AN Participant
s RN
/
Cuckoo's Egg @ o>
i Exceptlon Introduction

Legend _ ggcjgnge
Pointcut pattern Inter-Type Declaration Advice pattern
Pattern _with changes,

Figure 5.1: Combinations of aspect-oriented design patterns and required
changes.

In Figure [5.1]it can be seen that combination of a pointcut pattern with
another pointcut pattern does not require changes in the already applied

29

pattern. This represents simply defining further pointcuts.

Combining a pointcut pattern with an already applied advice or inter-
type declaration pattern requires changes in the advice or inter-type decla-
ration pattern since the combination assumes the use of pointcuts defined
in the pointcut pattern by the patterns of the latter two categories. This is
caused by the nature of pointcut patterns: they define pointcuts to be used
by other aspects in the application.

On the other hand, a combination of an advice pattern or inter-type
declaration pattern with other patterns of any category can be in most
cases achieved without changes to the already applied pattern.

Table summarizes the identified dependence of the aspect-oriented
pattern combination on the aspect-oriented pattern category in the table.
The columns represent the already applied patterns. The rows are the pat-
terns to be applied. The values in the cells indicate whether the already
applied patterns have to be modified in case of their combination with the
pattern in the corresponding row.

Table 5.1: Aspect-oriented categories and their combinations.

combined with Pointcut Pattern | Advice Pattern Inter-Type
— Declaration Pattern
Pointcut Pattern no change with changes with changes
Advice Pattern no change
Inter-Type no change
Declaration Pattern

Chapter 6

Conclusion and Future Work

This report was concerned with classification and combination of aspect-
oriented design patterns. An overview of common aspect-oriented design
patterns was presented. The GoF classification was applied to aspect-
oriented patterns, but sometimes it was questionable which category certain
design pattern belongs to. Therefore, a new classification according to the
aspect structure has been introduced. This classification suggests to classify
intrinsic design patterns according to structure of the aspect which repre-
sents them into three structural categories: pointcut design patterns, advice
design patterns and inter-type declaration design patterns (Chapter .

Identified categories are significant in combination of aspect-oriented
design patterns. According to structural category of design patterns it is
possible to predict whether another design pattern can be added to an al-
ready applied pattern with or without having to modify the applied pattern
(Chapter . Regularity in combining aspect-oriented design patterns has
been studied on the problem of class deprecation. Incremental solution in-
volving four aspect-oriented design patterns, of this problem, was presented
(Chapter [4]) and fully implemented (see the attached CD, Appendix |C)).

It is expected that new patterns will be discovered, which will bring new
possibilities into the combinations. As a future work these combinations
could be studied. Combination of reimplemented object-oriented patterns
with intrinsic aspect-oriented design patterns could also be interesting. It
seems some of object-oriented design patterns can be implemented using
adapted aspect-oriented design patterns (e.g, Observer by Director or Sin-
gleton by Policy). This indicates that some aspect-oriented design patterns
can be generalized forms of object-oriented design patterns.

Bibliography

[Ale79a]

[Ale79b]

[Cop04]

[GHJIV95]

[HBO3]

[HCO02]

[HK02]

[HSUO03]

[KLM+97]

Christopher Alexander. The Timeless Way of Building. Oxford
University Press, 1979. Cited in [ST02].

Christopher Alexander. The Timeless Way of Building. Oxford
University Press, 1979. Cited in [GHJV95].

James O. Coplien. The culture of patterns. Computer Science
and Information Systems (ComSIS), 1(2), November 2004.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides. Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1995.

Ouafa Hachani and Daniel Bardou. On aspect-oriented technol-
ogy and object-oriented design patterns. In Jan Hannemann,
Ruzanna Chitchyan, and Awais Rashid, editors, Analysis of
Aspect-Oriented Software (ECOOP 2003), July 2003.

Stefan Hanenberg and Pascal Costanza. Connecting aspects in
AspectJ: Strategies vs. patterns. In Yvonne Coady, Eric Eide,
David H. Lorenz, Mira Mezini, Klaus Ostermann, and Roman
Pichler, editors, First AOSD Workshop on Aspects, Components,
and Patterns for Infrastructure Software (AOSD-2002), March
2002.

Jan Hannemann and Gregor Kiczales. Design pattern imple-
mentation in Java and AspectJ. In OOPSLA, pages 161-173,
2002.

Stefan Hanenberg, Arno Schmidmeier, and Rainer Unland. As-
pectj idioms for aspect-oriented software construction. In Pro-
ceedings of 8th European Conference on Pattern Languages of
Programs, EuroPLoP 2003, Irsee, Germany, June 2003.

Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris
Maeda, Cristina Lopes, Jean-Marc Loingtier, and John Irwin.
Aspect-oriented programming. In Mehmet Aksit and Satoshi

34

Bibliography

[Lad03]

[Men07]

[Mil04]

[MV]

[Sch04]

[STO02]

Matsuoka, editors, 11th Europeen Conf. Object-Oriented Pro-
gramming, volume 1241 of LNCS, pages 220-242. Springer Ver-
lag, 1997.

Ramnivas Laddad. AspectJ in Action: Practical Aspect-Oriented
Programming. Manning, 2003.

Radoslav Menkyna. Towards combining aspect-oriented design
patterns. In Maria Bielikova, editor, IIT.SRC: Student Research
Conference, pages 1-8. Slovak University of Technology, 2007.

Russell Miles. AspectJ Cookbook. O’Reilly, 2004.

Radoslav Menkyna and Valentino Vranié. A bordered cuckoo’s
egg policy: Combining aspect-oriented design patterns. Sub-
mitted to 2nd International Conference on Software and Data
Technologies (ICSOFT), April 2007.

Arno Schmidmeier. Patterns and an antiidiom for aspect ori-
ented programming. In Proceedings of EuroPLoP 2004, 2004.

Alan Shalloway and James R. Trott. Design Patterns FEzplained.
Software Patterns Series. Addison-Wesley, 2002.

Appendix A

Towards Combining
Aspect-Oriented Design
Patterns

This appendix contains:

Radoslav Menkyna. Towards combining aspect-oriented design
patterns. In Maéria Bielikova, editor, IIT.SRC: Student Research
Conference, pages 1-8. Slovak University of Technology, 2007.

This article was accepted to the Informatics and Information Technologies
Student Research Conference (iit.src). It was awarded as best paper in
Bachelor category and selected to be sent at the ACM Student Research
Competition.

Towards Combining Aspect-Oriented Design
Patterns

Radoslav MENKYNA*

Slovak University of Technology
Faculty of Informatics and Information Technologies
Ilkovicova 3, 842 16 Bratislava, Slovakia
xmenkyna@is.stuba.sk

Abstract. Although aspect-oriented paradigm is quite new, patterns are
emerging in it already. This article provides an overview of common
aspect-oriented design patterns. The article discusses how these pat-
terns can be combined. Certain dependence between the design pattern
structure and its combination ability has been identified. Knowing a
structure of patterns, it is possible to say whether adding a new pattern
to existing one can be made with or without change of existing pattern.
Classification according to structure into pointcut design patterns and
advice design patterns is proposed.

1 Introduction

With increasing size of the project grows also the complexity of problems that have to be
solved. It is natural to use simple smaller building blocks to produce bigger structures.
That’s why it is natural to combine design patterns to solve complex problems.

This article identifies some regularities in combining aspect-oriented design patterns
according to their classification. Design patterns are classified according to structure
into pointcut and advice design patterns. Certain dependence between the combination
ability of specific pattern and its structure has been identified. According to structure of
the pattern it is possible to say whether adding some pattern to existing pattern can be
made with or without changes of existing pattern. The combination of design patterns
allows using their features together, but also it can lead to new features.

The rest of the article is organized as follows. In Section 2 an overview of aspect-
oriented design patterns can be found Section 3 presents a classification of aspect-oriented

* Supervisor: Dr. Valentino Vrani¢, Faculty of Informatics and Information Technologies STU
in Bratislava.

IIT.SRC 2007, Bratislava, April 18, 2007, pp. 1-8.

2 Radoslav Menkyna

design patterns according to Structure. Section 4 discusses how design patterns can be
combined and presents the dependence between structure and combination ability of
a pattern. Section 5 provides an overview of related work Section 6 represents the
conclusion and future work.

2 Overview of Aspect-Oriented Design Patterns

Despite aspect-oriented paradigm is just spreading, some strategies and idioms have
already been substantially generalized, do not rely on a particular language any more,
and as such can be accepted as design patterns. This section will present an overview of
common aspect-oriented design patterns.

2.1 Wormbhole

The Wormhole pattern [4] connects the callee with caller in such a way that they share
their context information. It creates a direct connection between two levels in the call
stack. This is very helpful when additional context information has to be added [4].
Instead of adding extra parameters in each method in the control flow or using a global
storage, this pattern can be used.

2.2 Exception Introduction

In some cases when the aspect is used to implement some crosscutting concerns checked
exceptions have to be caught in its advice. This usually happens when methods of Java
libraries, which declare to throw such exceptions, are used in its advice. In AspectJ,1
advice cannot declare to throw a checked exception unless the advised joint point declared
this exception. The base concern logic cannot declare those exceptions because it simply
does not know anything about the logic used in the crosscutting concern [4].

The Exception Introduction pattern [4] suggest that the checked exceptions should
be caught and simply wrapped into new concern-specific runtime exceptions. Such
exceptions can be then thrown to higher level, where they can be unwrapped and the
real cause of exception revealed.

2.3 Participant

Usually, aspects try to introduce some behavior to a base concern in such a way that
the base concern is not aware of the aspect. In this pattern, the roles swap: an aspect
makes classes to participate. This is needed for the purpose the Participant [4] is trying
to achieve. In some cases, defining pointcuts only by the means of language syntax is
not sufficient.

! This problem is common to many aspect-oriented languages.

Towards Combining Aspect-Oriented Design Patterns 3

For example, if the advice should affect only methods with certain characteristics,
one cannot decide only according to their names whether to include them in the pointcut
or not. Only the creator of these methods knows their characteristics. This is where
comes from the idea that classes themselves should express if they want to be advised.
If they want to participate they simply define an appropriate pointcut in them [4].

2.4 Cuckoo’s Egg

Cuckoo’s Egg design pattern [5] is quite simple but powerful. It expresses how powerful
aspect-oriented programming can be. It is used to control or change the objects created
by the constructor call. This means that with this pattern it is possible to change the type
of the object being instantiated [5].

2.5 Director

The Director pattern [5] can be used to define some roles or behavior to an unknown
number of classes. A role can be defined without knowing the particular class it will
be applied to. A pattern can be used to define some logic in an abstract aspect without
knowing the classes this logic will be applied to. The Director can also implement some
relationships within abstract entities [5].

2.6 Border Control

The Border Control design pattern [5] is used to define some reasonable regions in the
application. These regions are later reused by other aspects to ensure they are used only
in correct scope. Use of this pattern is also convenient when the changes in structure of
the application are expected. After such changes only declarations of regions in border
control aspect are changed and other aspects which are reusing these declarations will
be also affected [5].

2.7 Policy

The main idea of Policy pattern is to define some policy or rules within the application.
The rules can wary from suggestions and warnings to overriding methods, classes or
libraries. This is very useful in some project where many developers are involved [5].

2.8 Worker Object Creation

Worker Object Creation pattern [4] has a widespread use. For example, it may be used
when the use of the proceed call in an object-oriented context is needed or when the
proceed call should be executed in a different thread. This can be used with Java Swing
Framework, where all calls which update the GUI must be performed inside the event
dispatch thread [6]. Another example of the situation when the proceed call should be

4 Radoslav Menkyna

executed in a different thread is improving responsiveness of GUI applications which
perform complex computations (e.g., authorization and transaction management) [4].

This pattern can also be used to advise the proceed call. This is desired when the
aspect contains an around advice and the algorithm in the advice itself should be, for
example, traced or logged [6].

3 Aspect-Oriented Design Pattern Classification According to Struc-
ture

Interesting criterion for classification of aspect-oriented design patterns could be the
structure of an aspect-oriented design pattern.

Each design pattern is usually represented by one or more aspects. Structurally,
an aspect consists of three main components: inter-type declarations, pointcuts and
advices. Generally, the structure of an aspect that represents a design pattern can be
divided into two categories. These categories differ according to which component is
more significant for the main meaning for the purpose of the design pattern or, in other
words, which component is crucial to understand or achieve the logic of the design
pattern.

If main purpose is realized by pointcuts, advice is usually not presented or is very
simple. For example, an advice only presents how pointcuts would be used in it, but
the advice logic is not represented. In the category where advices have the main role,
pointcuts are usually declared as abstract or they are only symbolic.

Thus, according to their structure, aspect-oriented design patterns can be divided
into two categories: pointcut design patterns and advice design patterns. Patterns from
listed in the overview were divided according to structure into these categories:

o Pointcut design patterns: Wormbhole pattern, Participant pattern, Border Control
pattern

o Advice design patterns: Worker Object Creation pattern, Exception Introduction
pattern, Cuckoo’s Egg pattern, Director pattern, Policy pattern.

In most cases patterns were easy to classify by this criteria. It is possible to point out
the Participant pattern (Section 2.3) where the pointcuts crucial to logic of the design
pattern are not defined the in aspect but in plain Java classes. The Director design
pattern (Section 2.5) has a logic that can be sometimes expressed in a more complex
way than just by an advice (e.g., using interfaces or additional method definitions). In
wormhole pattern (Section 2.1) the advice is present only to show how to use pointcuts
init. Atlast, the Policy design pattern (Section 2.7) is in this paper treated like the advice
pattern, although it could be a representant of new inter-type declaration design patterns
category. From the point of combination these two categories have the same behaviour.

Towards Combining Aspect-Oriented Design Patterns 5

4 Combination of Aspect-Oriented Design Patterns

Aspect-oriented design patterns are defined in a modular way. They can be usually
implemented by one or more aspects, but in most cases their logic is concentrated in one
place. This comes from the nature of aspect-oriented programming. Aspects usually
alter behavior of base concerns without requiring awareness on their side. This makes
the combination of aspect-oriented design patterns easier than the combination of object-
oriented design patterns is. In general, a design pattern can be combined with many
other design patterns. The question is whether this combination would be useful and
meaningful. Due to this, we may expect that aspect-oriented design patterns more easily
form pattern languages.

In the following sections a dependence between the structure and combination ability
of patterns together with examples of combinations will be presented.

4.1 Dependence Between Structure and Combination Ability of Patterns

There is a connection between the structure of aspect-oriented design patterns and the way
how they can be combined with other aspect-oriented design patterns. The combination
of aspect-oriented design patterns is substantially affected by their structural type, this
means is possible to make statements about the way how this pattern could be combined
with other patterns.

It seems that a combining of a pointcut design pattern (Section 3) with another
pointcut design pattern does not require changes of existing design pattern. In this kind
of combination, the new pattern will reuse the pointcuts of the existing pattern. Adding
pointcut a design pattern to an advice design pattern usually requires changes in the
advice design pattern.

On the other hand, a combination of an advice design pattern with another design
pattern of any structural type can be done without changes to existing design pattern.
Examples of such combinations can be seen in sections: 4.2, 4.3. Dependence between
the structure of design patterns and the way how they can be combined is summarized
in Table 4.1.

Tab. 1. Dependence between the structure of design patterns and the way how they can be
combined.

pointcut advice
design pattern | design pattern
pointcut without change
design pattern change required
advice without without
design pattern change change

6 Radoslav Menkyna

4.2 Adding a Feature

Sometimes, a design pattern only adds some feature to the system. If this feature is
needed by another design pattern, the patterns can be used together. Aspect-oriented
design patterns are usually represented by one or more aspects. From the nature of
aspects some design pattern can be added to another without the modification of the
existing pattern.

An example of such a pattern that can be combined with almost any other pattern is
the Exception Introduction design pattern (Section 2.2). This pattern adds the ability to
use exceptions in advices in a proper way. When this feature is needed in another design
pattern, the Exception Introduction pattern can simply be added to the program without
having to make any change in existing patterns. Also Policy design pattern (Section 2.7)
can be used together with another design patterns without any changes to those patterns.

Example of exception introduction pattern adapted from [4]:

public abstract aspect ExceptionIntroductionAspect {
abstract pointcut operations();
// pointcut operations defines where should exception occur.
// When this is defined as another design pattern exception introduction is used together with an existing pattern
// and any change of its code is required.
Object around() : operations() {

try {
return proceed();
} catch (CheckedException ex) {
throw new RuntimeException(ex);
// CheckedException will be caught and new runtime exception will be thrown.

}

Adding pointcut design pattern to an advice design pattern requires usually a change
in existing advice pattern. Example of such a pattern is the Border Control design pattern
(Section 2.6). This pattern defines regions that are later used by other aspects or design
patterns. This suggests that after adding a feature represented by this pattern existing
aspects and patterns have to be altered.

Assume the pointcuts of a particular pattern in a growing application can no longer
be defined in a simple way because it is not certain whether the pattern should be applied
to new classes. Such a pattern can be combined with a Participant pattern (Section 2.3)
and the class can participate in the application of this pattern. Due to the implementation
of the Participant pattern, the existing pattern code must be altered.

All the combinations in this section are summarized at Figure. 1. There are three
groups of design patterns on the figure. Any pattern from the groups on a sides can be
combined with any pattern in the middle. Combining pattern from the left group, advice
design pattern, can be usually done without change. When using pattern from the right
group, pointcut design pattern, changes of existing design pattern will be required. All
patterns in the middle group are advice design patterns.

Towards Combining Aspect-Oriented Design Patterns 7

Advice DP
Advice DP ! Pointcut DP
Exception introduction \évjéllzsgg bIJEeCt Border control
Policy Dire ctorgg Participant
Without change Change needed

Fig. 1. Illustration of possible combinations of aspect-oriented design patterns.

4.3 Achieving New Functionality

Aspect-oriented design patterns can also be combined to achieve new functionality. A
simple example of such a use is the combination of the Policy design pattern (Section 2.7)
with Cuckoo’s Egg design pattern (Section 2.4). The Policy pattern in most cases only
defines some warnings or suggestions upon breaking the specific policy. By combining
it with the Cuckoo’s Egg design pattern it is possible to go further by not only showing
warning, but also override the use of specific classes and their methods.

5 Related Work

In GoF description of object-oriented design patterns [1] a section called related patterns
can be found. This section lists the names of the patterns often used with the pattern.
This in other words suggests which patterns can be combined with the pattern to solve
some problem. GoF also presented graphical representation of these relations. From
this representation, groups of patterns that are often combined can bee seen.

Object-orientated design patterns were reimplemented in Aspect] [3]. In many
cases better modularity was achieved, so the design pattern structure became clearer
and simpler to understand [3]. These patterns could be also combined with the intrinsic
aspect-oriented design patterns and better modularity achieved by reimplementation
would ease this combination.

Combination of idioms is similar to combination of design patterns. Idioms can be
generalized to become design patterns. Also idioms can be combined in various ways
to achieve a solution to some problem [2].

6 Conclusion and Future Work

The Article proposed ways how the aspect oriented design patterns can be combined.
Certain dependence between the design pattern structure and its combination ability
was discussed. The combination of the pointcut design pattern with another pointcut
pattern is usually done without need to modify the existing pattern. The combination of
the pointcut design pattern with an advice design pattern requires a change of existing

8 Radoslav Menkyna

structures during the implementation. Adding an advice design pattern to another design
pattern leads usually to the implementation where no change of existing pattern is needed.

This paper provided an overview of common aspect-oriented design patterns. An
alternative way of classification according to the structure of an aspect that represents the
design pattern was presented. Aspect-oriented patterns were divided into two categories:
pointcut design patterns and advice design patterns.

As a future work I would like to examine some inter-type declaration design patterns
which can form another structural category. More combinations of the aspect-oriented
design patterns should be examined. It is expected that new patterns will arise, which
will bring new possibilities into the combinations. There are also many object-oriented
design patterns reimplemented in Aspect] [3]. Combination of these patterns with
intrinsic aspect-oriented design patterns could be also interesting.

Acknowledgement: This work was partially supported by the Scientific Grant Agency
of Slovak Republic, grant No. VG1/3102/06.

References

[1] Gamma, E., et al.: Design patterns: elements of reusable object-oriented software.
Addison-Wesley Longman Publishing Co., Inc., 1995.

[2] Hanenberg, S., Schmidmeier, A., Unland, R.: Aspect] Idioms for Aspect-Oriented
Software Construction. In: Proceedings of EuroPLoP 2003, 2003.

[3] Hannemann, J., Kiczales, G.: Design pattern implementation in Java and Aspect].
In: Proceedings of the 17th conference on Object-oriented programming, systems,
languages, and applications (OOPSLA), 2002, pp. 161-173.

[4] Laddad, R.: AspectJ in Action: Practical Aspect-Oriented Programming. Manning,
2003.

[5] Miles, R.: Aspect Cookbook. O’Reilly, 2004.

[6] Schmidmeier, A.: Patterns and an Antiidiom for Aspect Oriented Programming.
In: Proceedings of 9th European Conference on Pattern Languages of Programs,
EuroPLoP 2004, Irsee, Germany, 2004.

Appendix B

A Bordered Cuckoo’s Egg
Policy: Combining
Aspect-Oriented Design
Patterns

This appendix contains:

Radoslav Menkyna and Valentino Vrani¢. A bordered cuckoo’s
egg policy: Combining aspect-oriented design patterns. Sub-
mitted to 2nd International Conference on Software and Data
Technologies (ICSOFT), April 2007.

Paper was submitted to 2nd International Conference on Software and Data
Technologies (ICSOFT). Currently, a review process is ongoing. Results are
going to be announced on May 21, 2007ﬂ My contribution to this paper is
approximately 70 %.

"http://www.icsoft.org/

A BORDERED CUCKOO’S EGG POLICY: COMBINING
ASPECT-ORIENTED DESIGN PATTERNS

Radoslav Menkyna, Valentino Vranié
Institute of Informatics and Software Engineering, Faculty of Informatics and Information Technologies
Slovak University of Technology, llkovicovd 3, 84216 Bratislava 4, Slovakia
xmenkyna@is.stuba.sk, vranic @fiit.stuba.sk

Keywords:

Abstract:

aspect-oriented design patterns, aspect structure, Policy, Border Control, Cuckoo’s Egg, Aspect]

This paper presents a combination of three particular aspect-oriented design patterns: Policy, Cuckoo’s Egg,

and Border Control. The combination is studied in the context of the class deprecation problem in team
development. Each of these three patterns is a representative of one of the three structural categories of
aspect-oriented design patterns: pointcut, advice, and inter-type declaration pattern category. Although aspect-
oriented patterns mostly can be combined with one another without having to modify the code of the pattern
that has been applied first, this is not always so. Based on the structural categorization of aspect-oriented
design patterns, a regularity in their sequential combination is uncovered and discussed in general and within
a detailed example of Policy, Cuckoo’s Egg, and Border Control combination and further examples of aspect-

oriented design pattern combinations.

1 INTRODUCTION

Although the notion of pattern in its original sense
proposed by Alexander was indivisible of the notion
of pattern language (Alexander, 1979), software pat-
terns are often perceived as more or less indepen-
dently applied sublimated pieces of development ex-
perience (Coplien, 2004). Having it this way, we tend
first to discover new patterns and then think of the
opportunities of their combination rather then to aim
at discovery of integral pattern languages that inher-
ently comprise the ties between the patterns. This is
so with object-oriented design patterns, and we may
see this also applies to aspect-oriented design patterns
that are just being discovered both on individual ba-
sis (Laddad, 2003; Miles, 2004; Schmidmeier, 2004)
and as pattern languages (Hanenberg et al., 2003).

There are already a significant number of aspect-
oriented design patterns discovered. Here we will
go through a combination of three particular aspect-
oriented design patterns towards some general as-
sumptions on aspect-oriented design pattern combi-
nation based on their structure.

Aspect-oriented design patterns discussed here
are related to the mainstream aspect-oriented ap-

proach established by PARC (Kiczales et al., 1997)
whose main programming language representative is
Aspect]. Numerous other aspect-oriented languages,
such as AspectC++, AspectS, or Weave.NET, follow
this paradigm. Most of existing frameworks that pro-
vide aspect-oriented programming support, such as
Spring, JBoss, or Seasor, also follow the PARC ap-
proach.

The rest of the article is organized as follows.
First, Section 2 states the problem of class depreca-
tion in team development which we will use to il-
lustrate the pattern combination. Section 3 describes
the structure of Policy, Border Control, and Cuckoo’s
Egg, the three aspect-oriented design patterns that
can help in solving the class deprecation problem,
and introduces a structural categorization of aspect-
oriented design patterns. Section 4 shows how Pol-
icy, Border Control, and Cuckoo’s Egg can be ac-
tually combined to solve the class deprecation prob-
lem. Based on the structural categorization of aspect-
oriented design, Section 5 devises a regularity in the
sequential combination of aspect-oriented design pat-
terns and discusses it in general and within a de-
tailed example of the Policy, Cuckoo’s Egg, and Bor-
der Control combination along with further examples

of aspect-oriented design pattern combinations. Sec-
tion 6 presents an overview of related work. Finally,
in Section 7, we make some conclusions and indicate
directions for further work.

2 Overcoming the Class Deprecation
Problem in Team Development

This section will define the class deprecation problem
in team development which we will use as an exam-
ple for pattern application throughout the rest of the
article.

Due to its complexity, software is usually devel-
oped in teams, and team development requires devel-
opers to obey some common rules and policies. A
frequent example is the introduction of a new version
of a class is to the framework used by application pro-
grammers. The old version of a class cannot be sim-
ply replaced with the new one at once. A new class
has to be tested (and corrected if necessary) for some
time during which it is common to have and use both
versions of the class.

All developers should be kept informed of the
new class version and warned—or sometimes even
forced—to use it. Just instructing developers to do so
simply doesn’t work. Developers often forget to obey
policies or they overlook the information about a new
class version. A better way is to incorporate this infor-
mation into the build process. Compiler messages—
warnings and errors—that notify developers of bro-
ken policies and rules have a better chance not to be
overlooked.

In cases when the policy must be strictly fulfilled,
the more radical steps may have to be taken. By intro-
ducing a new version of a class into the framework, its
former version becomes deprecated. It would be use-
ful not just to inform developers they are not allowed
to use the old version any more, but also to automat-
ically detect all attempts to instantiate the old class
and swap it with the new class instantiation. In the
next two sections we will see how the realization of
this policy can be achieved by combining three spe-
cific aspect-oriented design patterns, namely Policy,
Border Control, and Cuckoo’s Egg.

3 Structure of Aspect-Oriented
Design Patterns

The main construct in PARC aspect-oriented pro-
gramming is an aspect. It consists of pointcuts, which
specify the join points the aspect affects, advices that

implement the affecting functionality, and inter-type
declarations that statically affect types by introduc-
ing new fields and methods into them, inheritance re-
lationship, warnings, compile errors, softened excep-
tions, and annotations.

We will take a closer look at three aspect-oriented
design patterns (Section 3.1-3.3) originally described
by Miles (Miles, 2004) that we will combine (in Sec-
tion 4) to solve the problem of class deprecation in
team development described in the previous section.
Subsequently, we will devise structural categorization
of aspect-oriented design patterns (Section 3.4).

3.1 Border Control

The Border Control pattern (Miles, 2004) is used to
define regions in the application. These regions are
intended for use by other aspects to ensure they are
applied only to appropriate places. This is convenient
also when the system changes are expected. In case
of system changes, only declarations of regions in the
Border Control aspect should be changed and other
aspects which are using these declarations will be au-
tomatically redirected. As shown in Figure 1, the Bor-
der Control pattern can be implemented by a single
aspect containing only a set of pointcuts that define
the regions. Regions may represent types or methods.
For this, within() and withincode() primitive point-
cuts are used, respectively.

3.2 Cuckoo’s Egg

The Cuckoo’s Egg pattern enables to put another ob-
ject instead of the one that the creator expected to re-
ceive, much similar to what a cuckoo does with its
eggs. The pattern is implemented by an aspect that
consists of a pointcut that captures constructor calls of
the object to be swapped and an advice that actually
does the swapping by simply creating and returning
another object.

Figure 2 shows an example code of the Cuckoo’s
Egg pattern. Several types can be covered by swap-
ping (the code in the figure shows two classes,
MyClass1 and MyClass2) with constructor calls re-
stricted with respect to where they occur. Note that
the swapping object must be a subtype of the original
object class; otherwise, we will get a class cast ex-
ception on the first attempt to instantiate the original
class.

3.3 Policy

The main idea of the Policy pattern is to define some
policy or rules within the application. A breaking of

public aspect MyRegionSeparator {
public pointcut myTypes1(): within(mypackagel.+);
public pointcut myTypes2(): within(mypackage2.+);
public pointcut myTypes(): myTypes1() || myTypes2();

public pointcut myMainMethod(): withincode(public void mypackage2.MyClass.main(..));

Figure 1: The Border Control pattern.

public aspect MyClassSwapper {

public pointcut myConstructors(): call(MyClass1.new()) || call(MyClass2.new());

Object around(): myConstructors() {
return new AnotherClass();

}
}

Figure 2: The Cuckoo’s Egg pattern.

such a rule or policy involves issuing a compiler warn-
ing or error. This is very useful in projects that involve
many developers. The Policy pattern can be imple-
mented by a single or several aspects. A single aspect
approach is used to define project-wide rules or poli-
cies. If local rules or exceptions have to be addressed
as well, project-wide rules and policies are defined
in an abstract aspect with an abstract pointcut. This
pointcut is overridden in concrete aspects that inherits
from the abstract aspect in order to implement local
policies and rules (Miles, 2004).

3.4 Aspect-Oriented Design Pattern
Categories

Each aspect-oriented design pattern comprises at least
one aspect. By studying available aspect-oriented de-
sign patterns, one may notice that in the aspects of
each pattern one of the three main parts of an aspect,
i.e. a pointcut, advice, or inter-type declarations, pre-
vails in achieving the purpose of the pattern. Accord-
ing to the element that dominates the structure of the
aspects that implement them, aspect-oriented design
patterns can be divided into three categories: point-
cut patterns, advice patterns, and inter-type declara-
tion patterns. Each of the patterns introduced so far is
a representative of one of these categories. In the fol-
lowing text, we present further examples of patterns
and categorize them.

3.4.1 Pointcut Patterns

The Border Control pattern described in Section 3.1 is
an example of a pointcut pattern. It actually contains
no other elements than pointcuts. Other examples
of pointcut patterns include Wormhole and Partici-
pant. The Wormbhole pattern (Laddad, 2003) employs
pointcuts to connect a method callee with a caller in
such a way that they can share their context informa-
tion. It creates a direct connection between two levels
in the call stack. This is very helpful when additional
context information has to be added (Laddad, 2003).
Without this pattern we would have to add extra para-
meters to each method in the control flow or to use a
global storage.

Usually, aspects introduce some behavior to base
concerns in such a way that the base concern is not
aware of the aspect. In the Participant pattern (Lad-
dad, 2003), the roles swap: a class decides whether
it will allow an aspect to affect it by declaring an ap-
propriate pointcut. This may be useful when it is not
possible to capture classes and methods that have to
be affected by an aspect with the pointcut language in
areasonable way. For example, if an advice should af-
fect only methods with some properties not reflected
in their names, it is not possible to capture them by a
pointcut other by literally listing them.

3.4.2 Advice Patterns

The Cuckoo’s Egg pattern described in Section 3.2
is an example of an advice pattern. Other exam-
ples of advice patterns include Worker Object Cre-

public abstract aspect ProjectPolicy {
protected abstract pointcut allowedSystemOuts();

declare warning: call(x *.println(..)) && !allowedSystemOuts():

”System.out usage detected. Suggest using logging?”’;

}

public aspect MyAppPolicy extends ProjectPolicy {

protected pointcut allowedSystemOuts(): BorderControllerAspect.withinMyAppMainMethod() ||

BorderControllerAspect.withinThirdParty() ||
BorderControllerAspect.withinTestingRegion();

Figure 3: The Policy pattern (adapted from (Miles, 2004)).

ation and Exception Introduction.The Worker Object
Creation pattern (Laddad, 2003)—also known as Pro-
ceed Object (Schmidmeier, 2004)—captures the orig-
inal method execution into a runnable object. This
way it may be manipulated further. A typical use is
to post its execution to another thread. This is very
useful with Java Swing framework where all calls
that update the GUI must be performed inside the
event dispatch thread. Another example is improving
responsiveness of GUI applications (Laddad, 2003).
This pattern can also be used to advise the call to
proceed(). This is desired when an aspect contains an
around advice and the algorithm in the advice itself
should be, for example, traced or logged (Schmid-
meier, 2004).

In some cases, checked exceptions have to be
caught by an advice. This usually the case when
methods of Java libraries which declare to throw such
exceptions are used in the advice. In Aspect], an ad-
vice cannot declare throwing of a checked exception
unless the advised joint point declared this exception.
The base concern logic cannot declare those excep-
tions because it simply does not know anything about
the logic used in the crosscutting concern (Laddad,
2003). The Exception Introduction pattern (Laddad,
2003) suggests that the checked exceptions should
be caught and simply wrapped into new, concern-
specific runtime exceptions. Such exceptions can be
then thrown to a higher level where they can be un-
wrapped and the real cause of exception revealed.

3.4.3 Inter-Type Declaration Patterns

The Policy pattern described in Section 3.3 is an ex-
ample of an inter-type declaration pattern. Another
example of an inter-type declaration pattern is De-
fault Interface Implementation (Laddad, 2003) which
employs inter-type declarations to introduce fully im-

plemented methods into interfaces.! The classes that
implement these interfaces inherit the method imple-
mentations and do not have to provide their imple-
mentation if the default one is satisfactory.

4 Combining Aspect-Oriented
Design Patterns

This section will show how Policy, Border Control,
and Cuckoo’s Egg can be combined to solve the class
deprecation problem in team development presented
in Section 2.

Suppose the instantiation of sOldClass is depre-
cated. In our first approach to this problem we as-
sume it is sufficient to issue a warning in case of
deprecated class named instantiation. Developers are
supposed to manually change to NewClass instead.
Figure 4 shows how the Policy pattern can be ap-
plied to achieve this. The aspect in the figure will de-
tect every call to the OldClass constructor and show
the provided warning text during compilation. As-
pect] 5 supports declaring annotations, so a standard
@deprecated annotation can be introduced instead of
a general warning with a custom message as can be
seen in Figure 5.

Subsequently, we realize that we have to allow the
use of OldClass within the testing package and third
party code. In this situation, the Border Control pat-
tern (Section 3.1) can be applied. This pattern defines
regions in the application that can be used by other de-
sign patterns or aspects. Figure 6 presents an applica-
tion of the Border Control design pattern to our prob-
lem. The aspect defines three public pointcuts which
represent regions in our application. Afterwards, we

ILaddad actually introduces Default Interface Imple-
mentation as an Aspect] idiom (Laddad, 2003).

public aspect OldClassDeprecation {

declare warning: call(x.0OldClass.new()): "Class OldClass deprecated.”;

}

Figure 4: Capturing instantiations of a deprecated class with the Policy pattern.

public aspect OldClassDeprecation {
declare @constructor: OldClass.new(): @deprecated;
}

Figure 5: A Policy pattern that introduces @deprecated annotation.

will have to adapt the OldClassDeprecation aspect as
shown in Figure 7. By this, we actually combined a
Policy with an existing Border Control.

As you may recall, Border Control is a pointcut
pattern (Section 3.1). On the other hand, Policy is an
inter-type declaration design pattern (Section 3.3). As
we saw in the example, combining a pointcut pattern
with an existing inter-type declaration pattern requires
changes in the existing inter-type declaration pattern.

If we knew from the beginning there will be ex-
emptions from banning the use of OldClass, it would
be possible to apply the Border Control pattern first
and the Policy pattern could be then added without
having to change the existing code. This suggests
that combining an inter-type declaration pattern with
an existing pointcut pattern can be performed without
having to change the existing pattern.

Assume now we would like to make a change
from OldClass to NewClass automatic while still
keeping developers informed of attempts to instanti-
ate OldClass outside of the testing package and third
party code. This may be achieved with the Cuckoo’s
Egg pattern (Section 3.2). This pattern captures calls
to a constructor of a particular class and employs an
around advice to replace each such call with a call to
a constructor of another class.

Figure 8 shows how Cuckoo’s Egg may be applied
to replace OldClass constructions with NewClass
construction. A Cuckoo’s Egg pattern uses the point-
cuts defined in an existing Border Control pattern.
Cuckoo’s Egg is an advice design pattern and it was
combined with Border Control without having to
change it. This suggests that combining an advice
pattern with an existing pointcut pattern can be made
without changes in the existing pointcut pattern.

Recall from Section 3.2 that NewClass must be
a subtype of OldClass; otherwise, we will get a
class cast exception on the first attempt to instantiate
OldClass. Moreover, we need NewClass to be a sub-
type of OldClass to make it compatible with the ex-

isting references to OldClass to which it would be as-
signed. This can be achieved either by defining inher-
itance directly in NewClass or by using a declare par-
ents inter-type declaration (presumably, though not
necessarily, in the OldClassDeprecation aspect itself).

5 Regularity in Aspect-Oriented
Design Pattern Combination

As we will see in this section, the combination of
aspect-oriented design patterns is substantially af-
fected by their structural category (defined in Sec-
tion 3.4). Under a combination of two patterns we un-
derstand a subsequent interrelated application of two
patterns to a problem at hand. In other words, one of
the patterns is applied to the problem, and afterwards
another one is applied in connection to the artifacts of
the former pattern.

Thanks to the crosscutting nature of aspects, most
aspect-oriented design patterns can be combined with
other patterns without the need to modify the already
applied patterns. An example of a pattern that can be
combined with almost any other pattern is Exception
Introduction, which represents an advice pattern. Ex-
ception Introduction can simply be added to the pro-
gram without having to make any change to already
applied patterns.

Another pattern that can be used with other, al-
ready applied patterns without having to make any
changes to them is Policy, which is an inter-type
declaration pattern. This pattern defines a pointcut
that captures the join points in a base concern or an-
other pattern whose occurrence represents breaking of
some policy. If such a joint point occurs, a compile
error or warning is issued.

It is also possible to combine a pointcut pattern
with another pattern of the same type without hav-
ing to change that pattern. In such a combination, the
new pattern will actually use the pointcuts of the al-

public aspect MyApplicationRegions {

public pointcut TestingRegion(): within(com.myapplication.testing.+);
public pointcut MyApplication(): within(com.myapplication.+);
public pointcut ThirdParty(): within(com.myapplication.thirdpartylibrary.+);

}

Figure 6: The Border Control pattern used to partition code into regions.

public aspect OldClassDeprecation {

protected pointcut allowedUse(): BorderControl Aspect.ThirdParty() ||

BorderControlAspect.TestingRegion();

declare @constructor: OldClass.new(): @deprecated;

}

Figure 7: Combining Policy with Border Control.

ready applied pointcut pattern. A simple example of
this would be combining a Wormhole pattern with an
already applied Border Control pattern. This way, the
Wormhole pattern would be able to use regions de-
fined by the Border Control pattern in its own point-
cuts.

However, combining a pointcut pattern with an al-
ready applied advice or inter-type declaration pattern
usually requires a change of this pattern. An example
of combining a pointcut pattern with an already ap-
plied inter-type declaration pattern has been presented
in Section 4 where we had the Policy pattern applied
and combined the Border Control pattern with it. Re-
call also from the same section that if we go the other
way around, i.e. if we combine an inter-type dec-
laration pattern (e.g., Policy) or advice pattern (e.g.,
Cuckoo’s Egg) with an already applied pointcut pat-
tern (e.g., Border Control), this can be done without
having to change them.

Assume the pointcuts of a particular non-pointcut
pattern in a developing application can no longer be
defined in a simple way because it is not certain
whether the pattern should be applied to new classes.
Such a pattern can be combined with a Participant pat-
tern, which is a pointcut pattern, which would enable
individual classes to declare participation in this pat-
tern application. However, the implementation of a
Participant pattern requires the already applied pat-
tern code to be altered.

Figure 9 presents schematically the combinations
of the aspect-oriented design patterns we discussed.
Pattern category is indicated graphically: oval nodes
represent advice patterns, rectangular nodes are point-
cut patterns, and rhomboid nodes stand for inter-type
declaration patterns. Where any pattern of the given
category is applicable, its name is shown as aster-

isk. The edge direction corresponds to the direction
of pattern application: an edge originates in the pat-
tern being applied and ends in the pattern to which
this pattern is applied to achieve pattern combina-
tion. Dashed edges mean no change of the pattern
at the edge end is required, while solid lines mean the
change is necessary.

In Figure 9 we see that combining an advice or
inter-type declaration pattern can be done without
having to change the already applied advice pattern.
Combining a pointcut patterns with an already applied
advice pattern requires changes of the advice pattern
is required.

We consider obvious that a combination of a
pointcut pattern with an existing pointcut pattern re-
quires no change to the existing pattern: we sim-
ply define further pointcuts. Combining a pointcut
pattern with an already applied advice or inter-type
declaration pattern requires changes in the advice or
inter-type declaration pattern since the combination
assumes the use of pointcuts defined in the pointcut
pattern by the patterns of the latter two categories.
This is caused by the nature of pointcut patterns: they
define pointcuts to be used by other aspects in the ap-
plication. On the other hand, a combination of an
advice pattern or inter-type declaration pattern with
other patterns of any category can be in most cases
achieved without changes to the already applied de-
sign pattern.

Table 1 summarizes the identified dependence of
the aspect-oriented pattern combination on the aspect-
oriented pattern category. The columns represent the
already applied patterns. The rows are the patterns
to be applied. The values in cells indicate whether the
already applied patterns have to be modified in case of
their combination with the pattern in the correspond-

public aspect OldClassDeprecation {

public pointcut oldClassConstructor(): call(x.OldClass.new()) &&
!BorderControlAspect.ThirdParty() && !BorderControlAspect.TestingRegion();

Object around(): oldClassConstructor() {
return new MyApplication.NewClass();
}

}

Figure 8: Combining Cuckoo’s Egg with Border Control.

Border Control <K@ ——————

Legend

Pointcut pattern

Inter-Type Declaration

Advice Pattern

with changeg

Figure 9: Combinations of aspect-oriented design patterns and required changes.

ing row.

6 Related Work

Hanenberg et al. present a set of Aspect] idioms? and
a scheme for their interrelated application (Hanenberg
et al., 2003). Similarly to the well-known scheme of
GoF patterns (Gamma et al., 1995), it is represented
by a graph in which patterns that can be combined are
connected by directed edges. Each edge is annotated
with the role of the pattern in which it originates plays
in the pattern in which the edge terminates. However,
no attempt is made to categorize the idioms.
Although intrinsic aspect-oriented design patterns
are different than object-oriented patterns, we may
encounter a certain analogy between our categories
and those proposed by Gamma et al. (Gamma et al.,
1995). Thus, advice patterns recall behavioral pat-

2 Although denoted as idioms, they are applicable to
PARC style aspect-oriented languages as much as the pat-
terns presented in this paper.

terns since they affect behavior. Pointcut patterns deal
with how aspects are composed with classes, objects,
and other aspects, which is a paraphrase of the de-
scription of structural patterns. It has to be admitted
that inter-type declarations correspond to creational
patterns to a lesser extent, but we may see them as
patterns of creating new elements and relationships.

Class deprecation in team development can be
seen as a change and as such it is related to a broader
area of change control. Dolog et al. describe how
aspects can be used to capture change (Dolog et al.,
2001) and apply their approach to improve product
customization. Captured in an aspect, a change be-
comes pluggable and reapplicable. The reapplication
of a change implemented as an aspect to a new prod-
uct version in its simplest form takes only including
the aspect in a build. Conventional approach would
require performing a manual change extraction from
the old version and its manual integration into the new
version.

Table 1: Aspect-oriented categories and their combinations.

] combined with —

|| Pointcut Pattern [Advice Pattern | Inter-Type Declaration Pattern

Pointcut Pattern no change

| with changes |

with changes

Advice Pattern

no change

Inter-Type Declaration Pattern

no change

7 Conclusions and Further Work

In this paper, we proposed a categorization of aspect-
oriented design patterns according to their structure
into three categories: pointcut, advice, and inter-type
declaration patterns. This categorization is partic-
ularly useful in determining whether a combination
of an aspect-oriented design pattern with another, al-
ready applied pattern requires a change in this pattern.

We studied the combination of aspect-oriented de-
sign patterns of different categories with respect to the
stability of the already applied patterns in detail on the
combination of Policy, Border Control, and Cuckoo’s
Egg applied to the class deprecation problem in team
development.

Our further work involves exploring the possibili-
ties of employing aspect-oriented design patterns and
their combinations in capturing changes in a plug-
gable and reapplicable way in general and in appli-
cation customization in particular. Class depreca-
tion treated in this paper is actually one such change.
It would also be interesting to explore the possibili-
ties of the guided design pattern instantiation (Marko,
2004) with respect to aspect-oriented patterns and
making use of the combination constraints based on
aspect-oriented pattern categories in such a process.

We will also seek further parallels between cat-
egorization of GoF object-oriented design patterns
and our categorization of aspect-oriented design pat-
terns by exploring aspect-oriented implementations of
GoF object-oriented design patterns (Hannemann and
Kiczales, 2002).

ACKNOWLEDGEMENTS

This work was supported by the Science and Tech-
nology Assistance Agency under the contract No.
APVT-51-024604 and by the Scientific Grant Agency
of Slovak Republic (VEGA) grant No. VG 1/3102/06.

REFERENCES

Alexander, C. (1979). The Timeless Way of Building. Ox-
ford University Press. Cited in (Coplien, 2004).

Coplien, J. O. (2004). The culture of patterns. Computer
Science and Information Systems (ComSIS), 1(2).

Dolog, P., Vrani¢, V., and Bielikovd, M. (2001). Repre-
senting change by aspect. ACM SIGPLAN Notices,
36(12):77-83.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J.
(1995). Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley.

Hanenberg, S., Schmidmeier, A., and Unland, R. (2003).
Aspectj idioms for aspect-oriented software construc-
tion. In Proceedings of 8th European Conference
on Pattern Languages of Programs, EuroPLoP 2003,
Irsee, Germany.

Hannemann, J. and Kiczales, G. (2002). Design pattern im-
plementation in Java and Aspect]. In Proc. of the
17th Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA).

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C.,
Lopes, C. V., Loingtier, J.-M., and Irwin, J. (1997).
Aspect-oriented programming. In Aksit, M. and Mat-
suoka, S., editors, Proc. of 11th European Confer-
ence on Object-Oriented Programming (ECOOP’97),
LNCS 1241, Jyviskyld, Finland. Springer.

Laddad, R. (2003). AspectJ in Action: Practical Aspect-
Oriented Programming. Manning.

Marko, V. (2004). Template based, designer driven de-
sign pattern instantiation support. In Proceedings of
8th East European Conference on Advances in Data-
bases and Information Systems, ADBIS 2004, Bu-
dapest, Hungary.

Miles, R. (2004). AspectJ Cookbook. O’Reilly.

Schmidmeier, A. (2004). Patterns and an antiidiom for as-
pect oriented programming. In Proceedings of 9th
European Conference on Pattern Languages of Pro-
grams, EuroPLoP 2004, Irsee, Germany.

Appendix C

Attached CD Contents

Attached CD contains electronic version of this document and a full imple-
mentation of all examples from Chapter [4]in a sample application. CD also
contains Java Runtime Environment which is needed to run the application.
Eclipse, an open development platform, is also provided for browsing trough
the application. Further instructions can be found in the readme file stored
on CD.

	Introduction
	Design Patterns
	Idioms
	Aspect-Oriented Paradigm
	Report Organization

	Selected Aspect-Oriented Design Patterns
	Wormhole
	Exception Introduction
	Participant
	Cuckoo's Egg
	Director
	Border Control
	Policy
	Worker Object Creation

	Classification of Aspect-Oriented Design Patterns
	Gang of Four Classification
	Classification According to Aspect Structure

	Combination of Aspect-Oriented Design Patterns
	Class Deprecation Problem
	Warn of Deprecated Class Use
	Deprecated Class Swapping
	Logging of Swapping

	Regularity in Aspect-Oriented Design Pattern Combination
	Conclusion and Future Work
	Bibliography
	Towards Combining Aspect-Oriented Design Patterns
	A Bordered Cuckoo’s Egg Policy: Combining Aspect-Oriented Design Patterns
	Attached CD Contents

