Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development

Multi-Paradigm Design with Feature Modeling in
Aspect-Oriented Software Development

Erasmus Mobility at Lancaster University

Lecture 3

Valentino Vrani¢

Institute of Informatics and Software Engineering
Faculty of Informatics and Information Technologies
Slovak University of Technology
Bratislava, Slovakia
vranic@fiit.stuba.sk
http://fiit.stuba.sk/~vranic/

September 16-19, 2008

1/45

vranic@fiit.stuba.sk
http://fiit.stuba.sk/~vranic/

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development

Overview

© Introduction
© Feature Modeling
© Aspect-Orientation and Software Product Lines

@ Multi-Paradigm Design with Feature Modeling for Aspect]

© Summary

2/45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development

Introduction

Introduction

Notion of paradigm?
o large-scale view—traditional (object-oriented programming,
functional programming, etc.); imprecise
o small-scale view—paradigms as configurations of commonality
and variability (map to directly to language mechanisms)

Programming languages are often categorized according to
(large-scale) paradigms they support

Multi-paradigm languages: are there any other?

Multi-paradigm design: how to select a paradigm appropriate
for the problem being solved

Multi-paradigm design with feature modeling for AspectJ

1V. Vranié. Towards multi-paradigm software development. Journal of Computing and Information
Technology (CIT), 10(2): 133-147, 2002.
3/45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development

Introduction

Multi-Paradigm Design with Feature Modeling

application domain related information solution domain related information

Application Domain Feature Modelingl |SOI ution Domain Feature Modeling|

lication domain feature model solution domain feature model
P (paradigm model)

|Transformationa| Analysis|

application to solution domain mapping
(paradigm instances)

A
| Code Skeleton Design |

code skeleton

4/45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development

Feature Modeling

Feature Modeling

@ Captures connections among features and variability
o Feature model: a set of feature diagrams plus additional
information
@ Based on the notions of domain, concept, and feature
o Features: common and variable
o Concept instances: concept specializations
@ Various notations exist, e.g. FODA, ODM, or
Czarnecki-Eisenecker
@ Notation used here is based on Czarnecki-Eisenecker feature
modeling adapted to multi-paradigm design?

2V4 Vrani¢. Reconciling Feature Modeling: A Feature Modeling Metamodel. In M. Weske and

P. Liggesmeyer, Eds., Proc. of 5th Annual International Conference on Object-Oriented and
Internet-Based Technologies, Concepts, and Applications for a Networked World (Net.ObjectDays
2004), Erfurt, Germany, Sept. 2004. Springer.

5/45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development

Feature Modeling

Feature Variability (1)

Text Editing Buffer

Character Set
Memory Management

Debugging Code

number of lines

@ Mandatory features (edges ended by filled circles)

e Optional features (edges ended by empty circles)

6/45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development

Feature Modeling

Feature Variability (2)

Text Editing Buffer

Fil

| Character Set || Memory Management |

Q
Debugging Code

File Memory Management number of lines
i X Myl cursor position
reading inserting line p
writing removing line

o Alternative features (empty arc)

@ Or-features (filled arc)

7/45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development

Feature Modeling

Feature Variability (3)

Text Editing Buffer

-F'I
=

| Character Set || Memory Management |

@)
Debugging Code

Memory Management
inserting line p

@ Arcs modify the meaning of edges

e Mandatory/Optional alternative features
e Mandatory/Optional or-features

8/45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development

Feature Modeling

Feature Variability (4)

Text Editing Buffer

Fil

| [Character Set] || Memory Management |

c
Debugging Code

Memory Management
inserting line
@ Open features

o Further variable subfeatures are expected
e Denoted by square brackets; ellipsis is sometimes added

9/45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development

Feature Modeling

Feature Variability (5)

Text Editing Buffer

| [Character Set] | |Mem0ry Management(R)l

< c
Debugging Code —
remove text
1| [UNICODE

Memory Management number of lines
i - Pl cursor position
reading inserting line p
writing removing line

@ A feature can be included into a concept instance only if its
parent has been included

ASCI

o Features of all types may appear at any level

10/45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development

Feature Modeling

Concept References

Text Editing Buffer

| [Character Set] | |Memory Management(R)l

d Q
U Debugging Code(R)
AScCll| |UNICODE

number of lines

@ Denoted by ® ((R) in diagrams in this presentation)

@ May be expanded as needed

11/45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development

Feature Modeling

Binding time/mode

| [Character Set] | |Memory Management(R)l

el , o
static |Debugging Code _
remove text

ASCII| [UNICODE static
Memory Management

inserting line
e Binding time/mode

@ When/how a feature will be bound

@ Common binding times are source code, compile, link, load,
and runtime

@ Biding mode: static or dynamic

12/45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development

Feature Modeling

Additional Information in Feature Models

@ Information associated with concepts and features
o Textual information: description, presence rationale, inclusion
rationale, note
o Binding time/mode
e Constraints and default dependency rules
e An example constraint:

fl1 =16

13/45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development

Feature Modeling

Concept instantiation

compiletime
1

T T T
compiletime source time compiletime runtime t

14 /45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development

Feature Modeling

Parameterization in Feature Models

o Parameterized feature and concept names
Constraint: ¥ <i> € N p<i>.hN g

o Parameterized concepts

[<Plural Form>]

|<Singular Form> 1| |<Singular Form> 2|

|<Singular Form>| |<Singular Form>|

15/45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development

Aspect-Orientation and Software Product Lines

Aspects and Variability (1)

@ In traditional approaches to implementation, the given feature
code may be scattered across several components

@ This is especially important for variable features, because they
are being bound and unbound according to the choosen
configuration

o Leeetal:3

e Common features implemented as usual
o Variable features implemented with aspects

3Lee et al. Combining Feature-Oriented Analysis and Aspect-Oriented Programming for Product
Line Asset Development. In Proc. of 10th International Software Product Line Conference, Aug. 2006.

IEEE Cpmputer Society.
16 /45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development
Aspect-Orientation and Software Product Lines

Aspects and Variability (2)

@ In reality, a more thorough analysis is needed for each feature
in order to determine how it should be implemented

@ General rules of aspect-oriented approach apply: features that
crosscut other features should be implemented in the
aspect-oriented way regardless of being variable or not

@ Specific issues related to product lines should be considered
(with respect to feature interdependencies)

@ Binding time should be considered, too

17 /45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development

Aspect-Orientation and Software Product Lines

Feature Interaction Problem

@ Some features depend on other features

e A feature may require the presence or absence of another
feature

@ This relationship may be uni- or bidirectional

@ Abstract aspects—the way how to separate dependencies

o Dependencies are implemented as concrete pointcuts in
concrete aspects
o The functionality itself is in an abstract aspect

18/45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development

Multi-Paradigm Design with Feature Modeling for AspectJ

Multi-Paradigm Design with Feature Modeling

@ Multi paradigm design with feature modeling (MPDfm)* — a
method for paradigm selection

@ Software development process can be viewed as a mapping of
the application (problem) domain to the solution domain

@ Software development paradigm then determines how to
express application domain concepts in terms of solution
domain concepts

e Concepts of the solution domain correspond to programming
language mechanisms

o Individual concepts of the solution domain (e.g., class in Java)
may be considered as paradigms

@ The approach is based on Coplien’s multi-paradigm design®

4Valentino Vranié¢. Multi-paradigm design with feature modeling. Computer Science and
Information Systems Journal (ComSIS). 2(1): 79-102, 2005.
http://comsis.fon.bg.ac.yu/ComSIS/Vol2Nol/RegularPapers/VVranic.htm

5J. O. Coplien. Multi-Paradigm Design for C++. Addison-Wesley, 1998.
(J. O. Coplien. Multi-Paradigm Design. PhD thesis, Vrije Universiteit Brussel, 2000.
http://users.rcn.com/jcoplien/Mpd/Thesis/Thesis.pdf) 19 /45

http://comsis.fon.bg.ac.yu/ComSIS/Vol2No1/RegularPapers/VVranic.htm
http://users.rcn.com/jcoplien/Mpd/Thesis/Thesis.pdf

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development
Multi-Paradigm Design with Feature Modeling for AspectJ

Coplien’s Multi-Paradigm Design

Variability tables (from application domain SCVR analysis)

Text Editor Variability Analysis for Commonality domain:
TEXT EDITING BUFFERS (Commonality: Behavior and Structure)
Vi

Parameters of variation | Meaning /’Domain Binding | Default
Output medium Database, RCS file, | Run time | UNIX file
Structure, Algorithm TTY, UNIX file

Family table (fliom/ solution domain SCVR analysis)

Com lity MVariability Binding y1nstantiati0n ‘ Language Mech
4 e
Related #~ / ...
operations and | Algorithm Compi Optional Inheritance
some structure | (especially multiple), | time
(positive as well as (optional)
variability) data structure and
Wtate
Algorithm, as well as | Run time | Optional Virtual functions
(optional) data
structure and state

20/45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development

Multi-Paradigm Design with Feature Modeling for AspectJ

MPDgpm Activities (repeated)

application domain related information solution domain related information

Application Domain Feature Modelingl |SOI ution Domain Feature Modeling|

lication domain feature model solution domain feature model
P (paradigm model)

|Transformationa| Analysis|

application to solution domain mapping
(paradigm instances)

A
| Code Skeleton Design |

code skeleton

21/45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development

Multi-Paradigm Design with Feature Modeling for AspectJ

Modeling Paradigms in MPDgpy

Paradigm identification

o Directly and indirectly usable paradigms
e Paradigm hierarchy

Binding time identification
o Determining the sequence of binding times available in the
solution domain
e E.g., in Aspect) method body has the runtime binding

First-level paradigm model

Modeling individual paradigms

22 /45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development

Multi-Paradigm Design with Feature Modeling for AspectJ

First-Level Paradigm Model

@ First-level paradigm model consists of directly usable
paradigms

o Features of the solution concept
o Introduced as concept references (usually in plural)
e Their variability and binding time has to be determined

@ Example: AspectJ first-level paradigm model

AspectJ Program

O
| Classes(R) | Interfaces(R) | | Inheritances(R) | Aspects(R)

23/45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development

Multi-Paradigm Design with Feature Modeling for AspectJ

Modeling Individual Paradigms

@ Each paradigm is introduced in a separate feature diagram

e Solution domain concepts
e May refer one to another

@ Auxiliary concepts

o Concepts that paradigms refer to
o But they are not considered to be paradigms themselves

e Binding time (variable features)

e Instantiation (e.g., class—objects) is modeled with features

24 /45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development
Multi-Paradigm Design with Feature Modeling for AspectJ

Structures and Relationships

@ Structural paradigms correspond to the main constructs
(structures) of the programming language

@ Relationship paradigms are about relationships among the
programming language structures

@ In transformational analysis a node in the application domain
feature model

e May correspond to the root of a structural paradigm
e But can't correspond to the root of a relationship paradigm

25 /45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development

Multi-Paradigm Design with Feature Modeling for AspectJ

Aspect] Aspect-Oriented Paradigms

@ Aspect paradigm—stuctural paradigm (modularization)

@ A container for further aspect-oriented paradigms: advice,
pointcut, and inter-type declaration

@ These paradigms are structural paradigms (corresponds to
their task—to capture crosscutting concerns)

26 /45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development

Multi-Paradigm Design with Feature Modeling for AspectJ

Aspect

O
T

O
Inter-type Declarations(R)
O
o Inheritances(R)
@
Advices(R) LClasses(R)

Interfaces(R)
Q

@
4
_Methods(R)
Fields

Instantiation policy

-sin leton per control flow
. >

private || protected || public

Constraint: abstract V final
27 /45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development

Multi-Paradigm Design with Feature Modeling for AspectJ

Advice and Pointcut

Interface(R) | [Aspect(R)

O
Access(R)

| Static join points | | Dynamic join points |

& compile time & run time Constraints:
Join points Joi int:
* ﬁ © abstract \ Body

@ Access =Name

28 /45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development

Multi-Paradigm Design with Feature Modeling for AspectJ

Transformational Analysis in MPDgpy

@ Bottom-up instantiation of paradigms over application domain
concepts at source time
@ Application domain concepts are considered one by one

@ The corresponding structural paradigm is determined
@ The corresponding relationship paradigms for each relationship
in it are determined

29 /45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development

Multi-Paradigm Design with Feature Modeling for AspectJ

Paradigm Instantiation in MPDgp

o Paradigm instantiation in MPDF\ is actually concept
instantiation

e Understood as concept specialization
e Concept instances are represented by feature diagrams
e Binding time is being taken into account
@ Bottom-up instantiation
@ Inclusion of paradigm nodes is determined by the mapping of
the nodes of application domain concepts

o Conceptual correspondence
e Binding time correspondence

30/45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development

Multi-Paradigm Design with Feature Modeling for AspectJ

Transformational Analysis Example (1)

Text Editing Buffer

i - insert text
static Debugging Code
static remove text

File Memory Management number of lines
; - o cursor position
reading inserting line P

removing line

| [Character Set] | |Memory Management(R)l

31/45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development

Multi-Paradigm Design with Feature Modeling for AspectJ

Transformational Analysis Example (2)

Text Editing Buffer

i - insert text
static Debugging Code
static remove text

File Memory Management number of lines
: - o cursor position
reading inserting line p

removing line

| [Character Set] | |Mem0ry Management(R)l

32/45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development

Multi-Paradigm Design with Feature Modeling for AspectJ

Transformational Analysis Example (3)

Debugging Code

static

Memory Management

inserting line
removing line

33/45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development

Multi-Paradigm Design with Feature Modeling for AspectJ

Transformational Analysis Example (4)

Debugging Code

static

Memory Management

inserting line
removing line

34 /45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development

Multi-Paradigm Design with Feature Modeling for AspectJ

Transformational Analysis Example (5)

Debugging Code

static

Debugging Code.File

Debugging Code.FiIe(R)l | Memory Managementl

removing line

Pointcut(R)

Return value type

TypeR) [|Type(R) Type(R)

35/45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development

Multi-Paradigm Design with Feature Modeling for AspectJ

Transformational Analysis Example (6)

Debugging Code

static

Debugging Code.File

Debugging Code.FiIe(R)l | Memory Managementl

removing line

Pointcut(R)

’_‘_‘ ’_‘_‘ |DebuggingCodeFiIe.reading
Type(R) | | Type(R) TypeR) |

36 /45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development

Multi-Paradigm Design with Feature Modeling for AspectJ

Transformational Analysis Example (7)

Debugging Code

static

Debugging Code.File

Debugging Code.FiIe(R)”Memory Managemenll

removing line

O
Access(R)

O
returning| | throwing| |Return value type
’_‘_‘ ’_‘_‘ |Debugging Code.FiIe.readingl
Type(R) | [Type(R) Type(R) |
| Static join points | | Dynamic join points |
O compile time ¢ runtime

37/45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development

Multi-Paradigm Design with Feature Modeling for AspectJ

Transformational Analysis Example (8)

Debugging Code

static

Debugging Code.File

Debugging Code.FiIe(R)”Memory Managemenll

removing line

O
Access(R)

returning| | throwing| |Return value type
’_‘_‘ ’_‘_‘ |Debugging Code.FiIe.readingl
Type(R) | [Type(R) Type(R) |
| Static join points | | Dynamic join points |
O compile time ¢ runtime

38/45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development

Multi-Paradigm Design with Feature Modeling for AspectJ

Transformational Analysis Example (9)

Debugging Code

static

Debugging Code.File

Debugging Code.FiIe(R)”Memory Managemenll

removing line

O
throwing| [Return value type N

|Debugging CodeFiIe.readingl
Type(R) | | Type(R) TypeRR) |

39/45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development

Multi-Paradigm Design with Feature Modeling for AspectJ

Transformational Analysis Example (10)

Debugging Code

static

Debugging Code.File

Debugging Code.FiIe(R)”Memory Managemenll

removing line

40/ 45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development

Multi-Paradigm Design with Feature Modeling for AspectJ

Transformational Analysis Example (11)

41/45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development

Multi-Paradigm Design with Feature Modeling for AspectJ

Transformational Analysis Example (12)

42 /45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development

Multi-Paradigm Design with Feature Modeling for AspectJ

Transformational Analysis Example (13)

Debugging Code.File|-==~~"""""""""

Instantiation policy

:
e
Advice

! File object-

|Debugging Code.FiIe.writingl final

Dynamic join points
O

Join points

43 /45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development

Multi-Paradigm Design with Feature Modeling for AspectJ

Code Skeleton Design

@ Code is designed by traversing the trees of paradigm instances
@ Structural paradigm instances are considered first
@ Example: the aspect of the file debugging code

aspect FileDC {
before(File f): target(f) && call(x File.read(..)) {

¥
after(File f): target(f) && call(x File.write(..)) {

by
}

44 /45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development
Summary

Summary

o MPDFM: a method of paradigm selection based on feature
modeling

o Paradigms are viewed as solution domain concepts

@ The key activity: transformational analysis performed as a
bottom-up paradigm instantiations over application domain
concepts

@ Transformational analysis can be applied to all application
domain concepts, but can also be restricted to critical ones

@ The Aspect] paradigm model

o Further research:

o Use of MPDF\ for early aspect identification
o Use of feature modeling adapted to MPDF\ to deal with the
interaction of aspect-oriented change realizations

45 /45

	Introduction
	Feature Modeling
	Aspect-Orientation and Software Product Lines
	Multi-Paradigm Design with Feature Modeling for AspectJ
	Summary

